Davorin Kolic, Nedjad Ayaydin, Martin Edge

Neuron Consult ZT

IGT Salzburg

Scott Wilson

Feasibility of Strait Crossings Solutions

FIB Symposium 2007

Cavtat May 20-22, 2007

Content

- 1. Introduction : Concepts of Strait Crossings
- 2. Strait Crossings and Cost Overruns
- 3. Methodology for Cost Optimization
- 4. Examples of Strait Crossings
- 5. Future Structures
- 6. Conclusions

Metro 4 Line Budapest :

- undercrossing Danube
- bored tunnel option between stations Gellert and Fovam
- vicinity of old bridge
- mineral and thermal water wells in Danube
- length of about 500 m between stations

Aesthetic reasons when choosing tunnel option vs. bridge.

Project Busan – Island Geoje, 8.2 km

- Cable stayed bridges over 2 km
- Immersed tube 3.8 km long, 50 m deep
- on crowded ship route
- vicinity of a new port near Busan

double tube, double lane safety and ventilation channel

page 4/ 23

- Fehmarn Belt, Denmark-Germany : 19 km
 - Options :
- bridge, immersed tube, bored tunnel
- traffic capacity of the crossing vs. costs

		Total	Relat.	No.	Width	No.	Width	Length	Costs per m ²
model	Crossing type	costs	costs	lanes	lane	rail track	rail track	L	Traffic area
	Road lanes + rail tracks	Mill [€]	[%]	[-]	[m]	[-]	[m]	[m]	[€ / m²]
1	Bored tunnel 0+2	3.391	118	0	3,75	2	5,50	23.015	13.394
2	Immersed tube 0+2	3.545	123	0	3,75	2	5,50	20.210	15.946
3	Cable stayed bridge 4+2	3.040	106	4	3,75	2	5,50	21.318	5.485
3.1	Suspension bridge 4+2	3.573	124	4	3,75	2	5,50	21.278	6.458
4	Bored tunnel 4+2	4.420	154	4	3,75	2	5,50	22.815	7.451
5	Immersed tube 4+2	3.780	132	4	3,75	2	5,50	20.380	7.134
4.1	Bored tunnel 3+1	2.992	104	3	3,75	1	5,50	22.815	7.829
5.1	Immersed tube 3+1	2.874	100	3	3,75	1	5,50	20.380	8.419

Fehmarn Belt, Denmark-Germany : 19 km

Feasible solutions among :

- Bridge solution
- usually as a combination of a
- one big opening and several continuous spans
- Immersed tube
- up to 3 km length
- not deeper than 50 m
- <u>Bored tunnel</u>
- deeper elevation
- lenghts longer than 2 km

page 7/ 23

2. Strait Crossings and Cost Overruns

Transportation infrastructure project overruns by feasibility studies:

- Rail lines
- Highways
- Bridge crossings
- Tunnel road connections
- Metro lines

- Serious cost overruns by megaprojects:
- Rail tunnel crossing
- Rail-Road bridge-tunnel crossing
- Prof. Flyvbjerg,
- University Aarlborg, Danemark

Project	Cost overrun (%)
Boston's artery/tunnel project	19ú
Humber bridge, UK	175
Boston-Washington-New York rail, USA	130
Great Belt rail tunnel, Denmark	110
A6 Motorway Chapel-en-le-Frith/Whaley bypass, UK	100
Shinkansen Joetsu rail line, Japan	100
Washington metro, USA	85
Channel tunnel, UK, France	80
Karlsruhe–Bretten light rail, Germany	80
Øresund access links, Denmark	70
Mexico City metro line	60
Paris-Auber-Nanterre rail line	60
Tyne and Wear metro, UK	55
Great Belt link, Denmark	54
Øresund coast-to-coast link	26

2. Strait Crossings and Cost Overruns

Overestimation in the early project development phase :

- Making project more attractive
- Enabling investment
- Enabling start of works

Traffic forecasts :

- overestimated opening year
- traffic development through time
- investment back-up through traffic development

Project	Actual traffic as percentage of forecast traffic, opening year
Calcutta metro, India	5
Channel tunnel, UK, France	18
Miami metro, USA	15
Paris Nord TGV line, France	25
Humber Bridge, UK	25
M65 Huncoat Junction to Burnley Section, UK	35
Tyne and Wear metro, UK	50
Mexico City metro	50
Denver International Airport	55

3. Methodology for Cost Optimisation

page 10/ 23

3. Methodology for Cost Optimisation

Registar scenarija _1

Kvalitativna analiza

	-												101000 Million 40	Korek/
br,	PODRUCJA	Potpodručja		Opis scenarija		VG	ZO	so	SO RS	suma utjec.	Vjer. pojave	akcija	Aktivnost na rješavanju scenarija	dopuna
1	Uvjeti	1.1	priključak na post.	dodatni radovi na priključenju na post.	1	1	1	1	2	6	3	prihv.	proračun dodatnih troškova i radova	dop.
	lokaliteta		prometnice	cestovnu mrežu	-		-		-					1
		1.2	dubina na plov.	produbljivanje i proširenje profila za	1	1	4	1	1	8	2	prihv.	premjer podvodnog profila,	dop.
+		-	puta ispod mosta	plovila	-	-			-	-			pregled morskih strujanja i nanosa, zaštita od erozije pokrova temelja	
_		1.3	udar plovila u stup	radovi na zaštiti od udara plovila u	3	4	1	1	1	10	2	prihv.	izvedba zaštitinih nasipa	dop.
			mosta	sup mosta							1		piutajucin odbojnika	-
		1.4	vjetar	utjecaj vjetra na gradnju mosta	4	4	3	2	2	15	4	krit.	promjena poprečnog presjeka, zaštita od vietra na mostu	kor.
		1.5	potres	utjecaj potresa na gradnju mosta	4	2	3	2	2	13	.1	prihv.	provjera horizontalnih i vertikalnih pom. konstrukcije uvjetovanih potresom	dop.
2 0	Geološki uvjeti	2.1	meki slojevi	utjecaj mekih naslaga o kojima jos nema podataka geotehnickih istrazivanja	4	4	3	3	3	17	3	ozb.	temeljenje na krajnje mekim slojevima	kor.
		2.2	podzemne vode	pojava podzemnih voda i strujanja	3	3	1	2	2	11	0	zanem	0	0
		2.3	rasjedi temeljnog tla	pojava rasjeda u temeljnom tiu	3	3	1	2	2	11	1	zanem	0	0
3	Koncept	3.1	podvodni i vanjski	koncept izvedbe pod- i nadvodnog dijela	2	3	1	2	2	10	2	prihv.	provjera na udar broda	dop.
	mosta		dio stopova	stopa										
-		3.2	oslonci	pogreske u izvedbi niza oslonaca	1	2	1	1	1	6	2	prihv.	numer.provjera na izmjenu / slijeganje 1 oslonca	dop.
		3.3	poprečni presjek	osjetljivost otvorenih sandučastih presjeka	2	3	1	3	3	12	3	prihv.	provjera na dinamičke oscilacije i njihovu kombinaciju	dop.
4	Tehnologija	4.1	klizna oplata	izvedba stupova u kliznoj oplati	2	2	1	2	2	9	2	prihv.	provjera broja oplata u uporabi	dop.
-	izvedbe	-	stupova	200 2008	-	-	-			-	-			
_		4.2	ovjesi kolničkog nosača	montaža ovjesa visećeg mosta	3	3	1	3	3	13	2	prihv.	provjera na ispadanje jedne zatege	dop.

Register 1 : scenarios for additionla cost estimation

page 11/ 23

3. Methodology for Cost Optimisation

Decision matrix

for the

<u>qualitative</u> scenario evaluation

HS vs. Pl	Pi = 1	Pi = 2	Pi = 3	Pi = 4	Pi = 5
0 –2.5	Neglig.	Neglig.	Neglig.	Neglig.	Accept.
2.5 – 5.0	Neglig.	Neglig.	Accept.	Accept.	Accept.
5.0 – 7.5	Neglig.	Accept.	Accept.	High	High
7.5 - 10.0	Neglig.	Accept.	Accept.	High	High
10.0 –12.5	Neglig.	Accept.	Accept.	High	Severe
12.5– 15.0	Accept.	Accept.	High	High	Severe
15.0-17.5	Accept.	Accept.	High	Sévere	Severe
17.5-20.0	Accept.	High	High	Severe	Severe
20.0-22.5	Accept.	/ High	Severe	Severe	Severe
22.5-25.0	Accept.	High	Severe	Severe	Severe

Pelješac strait crossing

Longitudinal disposition and number of foundations/columns : influence of structural parameters on economic feasibility of strait crossing^{13/23}

Pelješac strait crossing

<u>Sutong bridge, PR China</u>
Foundation on group of
120 m deep RC bored piles

 <u>Rion Antirion bridge,Greece</u>
Foundation through soil improvement by steel casings

Pelješac strait crossing

Influence of a foundation design decision on the final cost estimation and overall project feasibility

page 15/ 23

Pelješac strait crossing

<u>costs of</u> supertructure parts VS. <u>medium</u> bridge crossing span **Overall vs. Basic** Costs 1.15:1 to 1.25:1

Influence of a structural design decision on the final cost estimation and overall project feasibility page 16/23

Pelješac strait crossing

Influence of a structural design decision on the final cost estimation and overall project feasibility page 17/23

Danube crossing Vidin (BG) – Calafat (RO)

Project in development over 20 years :

- strategical and traffic demand
- next bridge 350 km to east and 500km west

Last 10 years itensive development of technical options

Development as : Financing by : Estimated budget : design-build project, EU, banks , both countries 267 mill. EURo (addit.rail structures included)

page 18/ 23

Danube crossing Vidin (BG) – Calafat (RO)

Option "A" : continuous PC box girder as 2 parallel bridges Road 4 lanes 1440m long, Rail 2 tracks 2480 m long, max.span 180 m

Danube crossing Vidin (BG) – Calafat (RO)

No. var.	Structure type	Max. Span [m]	No. Foundat. pcs.	Overall constr. costs [mil. €]	Unit price [€ / m²]	Sub- Structure costs [%]	Super- structureco sts [%]	Relation costs [%]
"A"	Continuous box girder Rail 2 tracksj. 2480m, width 9.75 m Road 2 lanes 1440m, width 19.75 m Fondation on piles	180 180	22 10	<u>134.60</u>	2558	43	57	100

No. var.	Structure type	Basic costs mil. EUR	Minimal additional costs mil. EUR	Maximal additional costs mil. EUR	Overall construction costs- MIN mil. EUR	Overall construction costs- MAX mil. EUR
"A"	Continuous box girder Rail 2 tracks. 2480m, w 9.75 m Road 2 Ian.1440m,w 19.75 m Fondation on piles	<u>134.60</u>	19.62	33.85	<u>154.22</u>	<u>168,45</u>

Reduced cost overruns through : known type of project development, public presentation, involvement of expert consultanca for technical and economicla parts during 10 years Best bid : 165 mill EURo for bridge (estimated 226 mill.EURo) ?? page 20/ 23

5. Future Structures

<u>Ulla Bridge* design</u> for the new rail line in Spain

(*) design by H.Corres Peiretti , Madrid

<u>Substructure :</u> <u>similar on high-speed rail</u> <u>lines in Germany on</u> <u>line Hannover-</u> <u>Wuerzburg (LAP)</u>

Superstructure :

- <u>tube cross section</u> (stat .+ dynam.)
- <u>for urban areas (noise)</u>
- <u>for strait crossings</u>

page 21/ 23

5. Future Structures

Strait crossing Hong Kong –Macao , 32 km long over Pearl River estuary Shipping channel over 1.4 km immersed tube with 2 artificial islands

6. Conclusions

 Strait crossing solutions are based on location conditions and traffic requirements

 Structural feasibility through simple and sound structural design solutions

Economical feasibility through public evaluation of project demand and use